Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Scientific reports ; 11(1224)2021.
Article in English | LILACS, CONASS, SES-SP | ID: biblio-1148480

ABSTRACT

After nearly a century of vaccination and six decades of drug therapy, tuberculosis (TB) kills more people annually than any other infectious disease. Substantial challenges to disease eradication remain among vulnerable and underserved populations. The Guarani-Kaiowá people are an indigenous population in Paraguay and the Brazilian state of Mato Grosso do Sul. This community, marginalized in Brazilian society, experiences severe poverty. Like other South American indigenous populations, their TB prevalence is high, but the disease has remained largely unstudied in their communities. Herein, Mycobacterium tuberculosis isolates from local clinics were whole genome sequenced, and a population genetic framework was generated. Phylogenetics show M. tuberculosis isolates in the Guarani-Kaiowá people cluster away from selected reference strains, suggesting divergence. Most cluster in a single group, further characterized as M. tuberculosis sublineage 4.3.3. Closer analysis of SNPs showed numerous variants across the genome, including in drug resistance-associated genes, and with many unique changes fixed in each group. We report that local M. tuberculosis strains have acquired unique polymorphisms in the Guarani-Kaiowá people, and drug resistance characterization is urgently needed to inform public health to ensure proper care and avoid further evolution and spread of drug-resistant TB


Subject(s)
Humans , Tuberculosis, Multidrug-Resistant/microbiology , Polymorphism, Single Nucleotide/genetics , Mycobacterium tuberculosis/genetics , Phylogeny , Brazil , Drug Resistance, Multiple, Bacterial/genetics , Population Groups , Genotype
2.
Braz. j. med. biol. res ; 34(5): 567-575, May 2001. ilus
Article in English | LILACS | ID: lil-285870

ABSTRACT

We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants


Subject(s)
Animals , Amino Acids/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Glutamate-Ammonia Ligase/metabolism , Light , Nitrogen/metabolism , Arabidopsis/enzymology , Arabidopsis/radiation effects , Aspartate-Ammonia Ligase/metabolism , Carbon/metabolism , Gene Expression Regulation, Plant/radiation effects , Models, Genetic , Receptors, Glutamate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL